Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Biomol Ther (Seoul) ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38590092

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.

2.
Exp Mol Med ; 56(3): 721-733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528124

RESUMO

Acetyl-CoA synthetase 2 (ACSS2)-dependent acetate usage has generally been associated with tumorigenesis and increased malignancy in cancers under nutrient-depleted conditions. However, the nutrient usage and metabolic characteristics of the liver differ from those of other organs; therefore, the mechanism of ACSS2-mediated acetate metabolism may also differ in liver cancer. To elucidate the underlying mechanisms of ACSS2 in liver cancer and acetate metabolism, the relationships between patient acetate uptake and metabolic characteristics and between ACSS2 and tumor malignancies were comprehensively studied in vitro, in vivo and in humans. Clinically, we initially found that ACSS2 expression was decreased in liver cancer patients. Moreover, PET-CT imaging confirmed that lower-grade cancer cells take up more 11C-acetate but less 18F-fluorodeoxyglucose (18F-FDG); however, this trend was reversed in higher-grade cancer. Among liver cancer cells, those with high ACSS2 expression avidly absorbed acetate even in a glucose-sufficient environment, whereas those with low ACSS2 expression did not, thereby showing correlations with their respective ACSS2 expression. Metabolomic isotope tracing in vitro and in vivo revealed greater acetate incorporation, greater lipid anabolic metabolism, and less malignancy in high-ACSS2 tumors. Notably, ACSS2 downregulation in liver cancer cells was associated with increased tumor occurrence in vivo. In human patient cohorts, patients in the low-ACSS2 subgroup exhibited reduced anabolism, increased glycolysis/hypoxia, and poorer prognosis. We demonstrated that acetate uptake by ACSS2 in liver cancer is independent of glucose depletion and contributes to lipid anabolic metabolism and reduced malignancy, thereby leading to a better prognosis for liver cancer patients.


Assuntos
Glucose , Neoplasias Hepáticas , Humanos , Acetilcoenzima A/metabolismo , Glucose/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Linhagem Celular Tumoral , Acetatos , Ligases
3.
Int J Biol Sci ; 19(9): 2663-2677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324943

RESUMO

As a peripheral nerve injury disease, cavernous nerve injury (CNI) caused by prostate cancer surgery and other pelvic surgery causes organic damage to cavernous blood vessels and nerves, thereby significantly attenuating the response to phosphodiesterase-5 inhibitors. Here, we investigated the role of heme-binding protein 1 (Hebp1) in erectile function using a mouse model of bilateral CNI, which is known to promote angiogenesis and improve erection in diabetic mice. We found a potent neurovascular regenerative effect of Hebp1 in CNI mice, demonstrating that exogenously delivered Hebp1 improved erectile function by promoting the survival of cavernous endothelial-mural cells and neurons. We further found that endogenous Hebp1 delivered by mouse cavernous pericyte (MCP)-derived extracellular vesicles promoted neurovascular regeneration in CNI mice. Moreover, Hebp1 achieved these effects by reducing vascular permeability through regulation of claudin family proteins. Our findings provide new insights into Hebp1 as a neurovascular regeneration factor and demonstrate its potential therapeutic application to various peripheral nerve injuries.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Vesículas Extracelulares , Traumatismos dos Nervos Periféricos , Animais , Humanos , Masculino , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Vesículas Extracelulares/metabolismo , Proteínas Ligantes de Grupo Heme/farmacologia , Regeneração Nervosa , Pênis/irrigação sanguínea , Pênis/inervação , Pênis/cirurgia , Pericitos/metabolismo , Traumatismos dos Nervos Periféricos/terapia
4.
ACS Nano ; 17(12): 11567-11582, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37306074

RESUMO

Current cancer immunotherapeutic strategies mainly focus on remodeling the tumor microenvironment (TME) to make it favorable for antitumor immunity. Increasing attention has been paid to developing innovative immunomodulatory adjuvants that can restore weakened antitumor immunity by conferring immunogenicity to inflamed tumor tissues. Here, a galactan-enriched nanocomposite (Gal-NC) is developed from native carbohydrate structures through an optimized enzymatic transformation for effective, stable, and biosafe innate immunomodulation. Gal-NC is characterized as a carbohydrate nanoadjuvant with a macrophage-targeting feature. It is composed of repeating galactan glycopatterns derived from heteropolysaccharide structures of plant origin. The galactan repeats of Gal-NC function as multivalent pattern-recognition sites for Toll-like receptor 4 (TLR4). Functionally, Gal-NC-mediated TLR activation induces the repolarization of tumor-associated macrophages (TAMs) toward immunostimulatory/tumoricidal M1-like phenotypes. Gal-NC increases the intratumoral population of cytotoxic T cells, the main effector cells of antitumor immunity, via re-educated TAMs. These TME alterations synergistically enhance the T-cell-mediated antitumor response induced by αPD-1 administration, suggesting that Gal-NC has potential value as an adjuvant for immune checkpoint blockade combination therapies. Thus, the Gal-NC model established herein suggests a glycoengineering strategy to design a carbohydrate-based nanocomposite for advanced cancer immunotherapies.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamento farmacológico , Imunoterapia , Imunomodulação , Macrófagos , Adjuvantes Imunológicos/farmacologia
5.
Biomol Ther (Seoul) ; 31(6): 599-610, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183002

RESUMO

According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

6.
Biomed Pharmacother ; 162: 114716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086509

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) exhibits a pronounced extracellular matrix (ECM)-rich response, which is produced by an excessive amount of transforming growth factor ß (TGF-ß), resulting in tumor progression and metastasis. In addition, TGF-ß signaling contributes to rapidly acquired resistance and incomplete response to gemcitabine. Recently, selective inhibitors of the TGF-ß signaling pathway have shown promise in PDAC treatment, particularly as an option for augmenting responses to chemotherapy. Here, we investigated the synergistic anticancer effects of a small-molecule TGF-ß receptor I kinase inhibitor (vactosertib/EW-7197) in the presence of gemcitabine, and its mechanism of action in pancreatic cancer. Vactosertib sensitized pancreatic cancer cells to gemcitabine by synergistically inhibiting their viability. Importantly, the combination of vactosertib and gemcitabine significantly attenuated the expression of major ECM components, including collagens, fibronectin, and α-SMA, in pancreatic cancer compared with gemcitabine alone. This resulted in potent induction of mitochondrial-mediated apoptosis, gemcitabine-mediated cytotoxicity, and inhibition of tumor ECM by vactosertib. Additionally, the combination decreased metastasis through inhibition of migration and invasion, and exhibited synergistic anti-cancer activity by inhibiting the TGF-ß/Smad2 pathway in pancreatic cancer cells. Furthermore, co-treatment significantly suppressed tumor growth in orthotopic models. Therefore, our findings demonstrate that vactosertib synergistically increased the antitumor activity of gemcitabine via inhibition of ECM component production by inhibiting the TGF-ß/Smad2 signaling pathway. This suggests that the combination of vactosertib and gemcitabine may be a potential treatment option for patients with pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas
7.
Am J Cancer Res ; 13(2): 452-463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895970

RESUMO

Double hit diffuse large B-cell lymphoma (DLBCL) with rearrangement and overexpression of both c-Myc and Bcl-2 responds poorly to standard R-CHOP therapy. In a recent phase I study, Venetoclax (ABT-199) targeting Bcl-2 also exhibited disappointing response rates in patients with relapsed/refractory DLBCL, suggesting that targeting only Bcl-2 is not sufficient for achieving successful efficacy due to the concurrent oncogenic function of c-Myc expression and drug resistance following an increase in Mcl-1. Therefore, co-targeting c-Myc and Mcl-1 could be a key combinatorial strategy to enhance the efficacy of Venetoclax. In this study, BR101801 a novel drug for DLBCL, effectively inhibited DLBCL cell growth/proliferation, induced cell cycle arrest, and markedly inhibited G0/G1 arrest. The apoptotic effect of BR101801 was also observed by increased Cytochrome C, cleaved PARP, and Annexin V-positive cell populations. This anti-cancer effect of BR101801 was confirmed in animal models, where it effectively inhibited tumor growth by reducing the expression of both c-Myc and Mcl-1. Furthermore, BR101801 exhibited a significant synergistic antitumor effect even in late xenograft models when combined with Venetoclax. Our data strongly suggest that c-Myc/Bcl-2/Mcl-1 triple targeting through a combination of BR101801 and Venetoclax could be a potential clinical option for double-hit DLBCL.

8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769259

RESUMO

Severe vascular and nerve damage from diabetes is a leading cause of erectile dysfunction (ED) and poor response to oral phosphodiesterase 5 inhibitors. Argonaute 2 (Ago2), a catalytic engine in mammalian RNA interference, is involved in neurovascular regeneration under inflammatory conditions. In the present study, we report that Ago2 administration can effectively improve penile erection by enhancing cavernous endothelial cell angiogenesis and survival under diabetic conditions. We found that although Ago2 is highly expressed around blood vessels and nerves, it is significantly reduced in the penis tissue of diabetic mice. Exogenous administration of the Ago2 protein restored erectile function in diabetic mice by reducing reactive oxygen species production-signaling pathways (inducing eNOS Ser1177/NF-κB Ser536 signaling) and improving cavernous endothelial angiogenesis, migration, and cell survival. Our study provides new evidence that Ago2 mediation may be a promising therapeutic strategy and a new approach for diabetic ED treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Mamíferos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ereção Peniana , Pênis/irrigação sanguínea , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/farmacologia
9.
Anal Chem ; 95(2): 1184-1192, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36602057

RESUMO

Early diagnosis of hepatocellular carcinoma (HCC) is difficult; the lack of convenient biomarker-based diagnostic modalities renders high-risk HCC patients burdened by life-long periodical examinations. Here, a new chemical biopsy approach was developed for noninvasive diagnosis of HCC using urine samples. Bioinformatic screening for tumor suppressors yielded glycine N-methyltransferase (GNMT) as a biomarker with clinical relevance to HCC tumorigenesis. A liquid chromatography-mass spectrometry (LC-MS)-based chemical biopsy detecting nonradioactive 13C-sarcosine from 13C-glycine was designed to noninvasively assess liver GNMT activity extrahepatically. 13C-Sarcosine showed a strong correlation with GNMT in normal and cancerous liver cells. In an autochthonous animal model developing visible cancer nodules at 17 weeks, the urinary 13C-sarcosine chemical biopsy exhibited notable changes as early as 8 weeks, showing significant correlations with liver GNMT and molecular pathological changes. Our chemical biopsy approach should facilitate early and noninvasive diagnosis of HCC, with direct relevance to tumorigenesis, which can be straightforwardly applied to other diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Glicina N-Metiltransferase , Sarcosina , Fígado/patologia , Transformação Celular Neoplásica/patologia , Carcinogênese/patologia
10.
Andrology ; 11(2): 358-371, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35866351

RESUMO

BACKGROUND: The incidence of diabetic erectile dysfunction (ED) is rapidly increasing, and due to the severe angiopathy caused by diabetes, current drugs are ineffective at treating ED. Insulin-like growth factor-binding protein 5 (IGFBP5) promotes cell death and induces apoptosis in various cell types. OBJECTIVES: To evaluate the effectiveness of IGFBP5 knockdown in improving erectile function in diabetic mice. MATERIALS AND METHODS: Diabetes was induced by injecting streptozotocin (STZ) intraperitoneally into male 8-week-old C57BL/6 mice. Eight weeks after diabetes induction, mice were divided into four groups: a nondiabetic control group and three STZ-induced diabetic mice groups, which were administered intracavernous injections of phosphate buffered saline, scrambled control shRNA, or shRNA targeting mouse IGFBP5 (shIGFBP5) lentivirus particles. Two weeks later, we measured erectile function by electrically stimulating the bilateral cavernous nerve. To mimic diabetic angiopathy, primary cavernous endothelial cells (MCECs) from healthy mice were cultured and treated with glucose. RESULTS: IGFBP5 expression in MCECs or cavernous tissues were significantly increased under diabetic conditions, and knockdown of IGFBP5 induced MCECs angiogenic activity under high-glucose conditions. STZ-induced diabetic mice had reduced erectile function, but shIGFBP5 treatment resulted in significant improvements (to 90% of the nondiabetic control group level). Furthermore, in diabetic mice, numbers of cavernous endothelial cells, pericytes, and neuronal cells were increased by shIGFBP5 treatment, which also increased eNOS Ser1177 phosphorylation, decreased permeability and apoptosis of cavernous endothelial cells. In addition, IGFBP5 was found to mediate the AKT, ERK, p38 signaling pathways. DISCUSSION AND CONCLUSION: Knockdown of IGFBP5 improved erectile function in diabetic mice by promoting cell proliferation and reducing apoptosis and permeability. Local inhibition of IGFBP5 expression may provide a new treatment strategy for diabetic ED and other ischemic vascular or neurological diseases.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Humanos , Masculino , Camundongos , Animais , Disfunção Erétil/tratamento farmacológico , Células Endoteliais , Pênis/metabolismo , Diabetes Mellitus Experimental/complicações , Camundongos Endogâmicos C57BL , Ereção Peniana , Glucose/metabolismo
11.
Am J Cancer Res ; 12(9): 4326-4342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225647

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extracellular matrix (ECM)-rich carcinoma, which promotes chemoresistance by inhibiting drug diffusion into the tumor. Discoidin domain receptor 1 (DDR1) increases tumor progression and drug resistance by binding to collagen, a major component of tumor ECM. Therefore, DDR1 inhibition may be helpful in cancer therapeutics by increasing drug delivery efficiency and improving drug sensitivity. In this study, we developed a novel DDR1 inhibitor, KI-301690 and investigated whether it could improve the anticancer activity of gemcitabine, a cytotoxic agent widely used for the treatment of pancreatic cancer. KI-301690 synergized with gemcitabine to suppress the growth of pancreatic cancer cells. Importantly, its combination significantly attenuated the expression of major tumor ECM components including collagen, fibronectin, and vimentin compared to gemcitabine alone. Additionally, this combination effectively decreased mitochondrial membrane potential (MMP), thereby inducing apoptosis. Further, the combination synergistically inhibited cell migration and invasion. The enhanced anticancer efficacy of the co-treatment could be explained by the inhibition of DDR1/PYK2/FAK signaling, which significantly reduced tumor growth in a pancreatic xenograft model. Our results demonstrate that KI-301690 can inhibit aberrant ECM expression by DDR1/PYK2/FAK signaling pathway blockade and attenuation of ECM-induced chemoresistance observed in desmoplastic pancreatic tumors, resulting in enhanced antitumor effect through effective induction of gemcitabine apoptosis.

12.
World J Mens Health ; 40(4): 580-599, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36047068

RESUMO

PURPOSE: Diabetes mellitus, one of the major causes of erectile dysfunction, leads to a poor response to phosphodiesterase-5 inhibitors. Heat shock protein 70 (Hsp70), a ubiquitous molecular chaperone, is known to play a role in cell survival and neuroprotection. Here, we aimed to assess whether and how Hsp70 improves erectile function in diabetic mice. MATERIALS AND METHODS: Eight-week-old male C57BL/6 mice and Hsp70-Tg mice were used in this study. We injected Hsp70 protein into the penis of streptozotocin (STZ)-induced diabetic mice. Detailed mechanisms were evaluated in WT or Hsp70-Tg mice under normal and diabetic conditions. Primary MCECs, and MPG and DRG tissues were cultivated under normal-glucose and high-glucose conditions. RESULTS: Using Hsp70-Tg mice or Hsp70 protein administration, we demonstrate that elevated levels of Hsp70 restores erectile function in diabetic mice. We found that cystathionine gamma-lyase (Cse) is a novel target of Hsp70 in this process, showing that Hsp70-Cse acts through the SDF1/HO-1/PI3K/Akt/eNOS/NF-κB p65 pathway to exert its neurovascular regeneration-promoting effects. Coimmunoprecipitation and pull-down assays using mouse cavernous endothelial cells treated with Hsp70 demonstrated physical interactions between Hsp70 and Cse with a dissociation constant of 1.8 nmol/L. CONCLUSIONS: Our findings provide novel and solid evidence that Hsp70 acts through a Cse-dependent mechanism to mediate neurovascular regeneration and restoration of erectile function under diabetic conditions.

13.
Am J Cancer Res ; 12(7): 3083-3098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968350

RESUMO

The use of anesthetics in the surgical resection of tumors may influence the prognosis of cancer patients. Lidocaine, a local anesthetic, is known to act as a chemosensitizer and relieve pain in some cancers. In addition, palbociclib, a potent cyclin-dependent kinase (CDK) 4/6 inhibitor, has been approved for chemotherapy of advanced breast cancer. However, recent studies have revealed the acquired resistance of breast cancer cells to palbociclib. Therefore, the development of combination therapies that can extend the efficacy of palbociclib or delay resistance is crucial. This study investigated whether lidocaine would enhance the efficacy of palbociclib in breast cancer. Lidocaine synergistically suppressed the growth and proliferation of breast cancer cells by palbociclib. The combination treatment showed an increased cell cycle arrest in the G0/G1 phase by decreasing retinoblastoma protein (Rb) and E2F1 expression. In addition, it increased apoptosis by loss of mitochondrial membrane potential as observed by increases in cytochrome c release and inhibition of mitochondria-mediated protein expression. Additionally, it significantly reduced epithelial-mesenchymal transition and PI3K/AKT/GSK3ß signaling. In orthotopic breast cancer models, this combination treatment significantly inhibited tumor growth and increased tumor cell apoptosis compared to those treated with a single drug. Taken together, this study demonstrates that the combination of palbociclib and lidocaine has a synergistic anti-cancer effect on breast cancer cells by the inhibition of the PI3K/AKT/GSK3ß pathway, suggesting that this combination could potentially be an effective therapy for breast cancer.

14.
Int J Biol Sci ; 18(9): 3653-3667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813481

RESUMO

Diabetes mellitus is one of the main causes of erectile dysfunction (ED). Men with diabetic ED do not respond well to oral phosphodiesterase-5 inhibitors owing to neurovascular dysfunction. Pericyte-derived extracellular vesicle-mimetic nanovesicles (PC-NVs) are known to promote nerve regeneration in a mouse model of cavernous nerve injury. Here, we report that administration of PC-NVs effectively promoted penile angiogenesis and neural regeneration under diabetic conditions, thereby improving erectile function. Specifically, PC-NVs induced endothelial proliferation and migration and reduced cell apoptosis under diabetic conditions. In addition, PC-NVs induced neural regeneration in STZ-induced diabetic mice in dorsal root ganglion and major pelvic ganglion explants in vivo and ex vivo under high-glucose conditions. We found that lipocalin 2 (Lcn2) is a new target of PC-NVs in this process, demonstrating that PC-NVs exert their angiogenic and nerve-regeneration effects by activating MAP kinase and PI3K/Akt and suppressing P53 signaling pathway in an Lcn2-dependent manner. Our findings provide new conclusive evidence that PC-NVs can promote neurovascular regeneration and recovery of erectile function under diabetic conditions via an Lcn2-dependent mechanism. Thus, local administration of PC-NVs may be a promising treatment strategy for the treatment of diabetic ED.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Vesículas Extracelulares , Animais , Diabetes Mellitus Experimental/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Vesículas Extracelulares/metabolismo , Humanos , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
15.
Biomed Pharmacother ; 152: 113241, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691157

RESUMO

The novel (nua) kinase family 1 (NUAK1) is an AMPK-related kinase and its expression is associated with tumor malignancy and poor prognosis in several types of cancer, suggesting its potential as a target for cancer therapy. Therefore, the development of NUAK1-targeting inhibitors could improve therapeutic outcomes in cancer. We synthesized KI-301670, a novel NUAK1 inhibitor, and assessed its anticancer effects and mechanism of action in pancreatic cancer. It effectively inhibited pancreatic cancer growth and proliferation, and induced cell cycle arrest, markedly G0/G1 arrest, by increasing the expression of p27 and decreasing expression of p-Rb and E2F1. Additionally, the apoptotic effect of KI-301670 was observed by an increase in cleaved PARP, TUNEL-positive cells, and annexin V cell population, as well as the release of cytochrome c via the loss of mitochondrial membrane potential. KI-301670 inhibited the migration and invasion of pancreatic cancer cells. Mechanistically, KI-301670 effectively inhibited the PI3K/AKT pathway in pancreatic cancer cells. Furthermore, it significantly attenuated tumor growth in a mouse xenograft tumor model. Our results demonstrate that a novel NUAK1 inhibitor, KI-301670, exerts anti-tumor effects by directly suppressing cancer cell growth by affecting the PI3K/AKT pathway, suggesting that it could be a novel therapeutic candidate for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
16.
Sci Rep ; 12(1): 8620, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597800

RESUMO

Stem cells are attractive candidates for the regeneration of tissue and organ. Mesenchymal stem cells (MSCs) have been extensively investigated for their potential applications in regenerative medicine and cell therapy. For developing effective stem cell therapy, the mass production of consistent quality cells is required. The cell culture medium is the most critical aspect of the mass production of qualified stem cells. Classically, fetal bovine serum (FBS) has been used as a culture supplement for MSCs. Due to the undefined and heterologous composition of animal origin components in FBS, efforts to replace animal-derived components with non-animal-derived substances led to safe serum free media (SFM). Adipose derived mesenchymal stem cells (ADSCs) cultivated in SFM provided a more stable population doubling time (PDT) to later passage and more cells in a shorter time compared to FBS containing media. ADSCs cultivated in SFM had lower cellular senescence, lower immunogenicity, and higher genetic stability than ADSCs cultivated in FBS containing media. Differential expression analysis of mRNAs and proteins showed that the expression of genes related with apoptosis, immune response, and inflammatory response were significantly up-regulated in ADSCs cultivated in FBS containing media. ADSCs cultivated in SFM showed similar therapeutic efficacy in an acute pancreatitis mouse model to ADSCs cultivated in FBS containing media. Consideration of clinical trials, not only pre-clinical trial, suggests that cultivation of MSCs using SFM might offer more safe cell therapeutics as well as repeated administration due to low immunogenicity.


Assuntos
Células-Tronco Mesenquimais , Pancreatite , Doença Aguda , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultura , Meios de Cultura Livres de Soro , Camundongos , Soro
17.
Int J Mol Med ; 49(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935051

RESUMO

Pericyte­derived extracellular vesicle­mimetic nanovesicles (PC­NVs) play an important role in the improvement of erectile function after cavernous nerve injury. However, the impact of PC­NVs on the peripheral nervous system (PNS), such as the sciatic nerve, is unclear. In this study, PC­NVs were isolated from mouse cavernous pericytes (MCPs). A sciatic nerve transection (SNT) model was established using 8­week­old C57BL/6J mice. The sciatic nerve was harvested 5 and 14 days for immunofluorescence and western blot studies. Function studies were evaluated by performing the rotarod test and walking track analysis. The results demonstrated that PC­NVs could stimulate endothelial cells, increase neuronal cell content, and increase macrophage and Schwann cell presence at the proximal stump rather than the distal stump in the SNT model, thereby improving angiogenesis and nerve regeneration in the early stage of sciatic nerve regeneration. In addition, PC­NVs also increased the expression of neurotrophic factors (brain­derived nerve growth factor, neurotrophin­3 and nerve growth factor) and the activity of the cell survival signaling pathway (PI3K/Akt signaling), and reduced the activity of the JNK signaling pathway. Additionally, after 8 weeks of local application of PC­NVs in SNT model mice, their motor and sensory functions were significantly improved, as assessed by performing the rotarod test and walking track analysis. In conclusion, the present study showed that the significant improvement of neurovascular regeneration in mice following treatment with PC­NVs may provide a favorable strategy for promoting motor and sensory regeneration and functional recovery of the PNS.


Assuntos
Vesículas Extracelulares/metabolismo , Nanopartículas/química , Regeneração Nervosa/fisiologia , Pericitos/metabolismo , Nervo Isquiático/fisiopatologia , Animais , Modelos Animais de Doenças , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Células de Schwann/patologia , Nervo Isquiático/patologia , Transdução de Sinais , Análise de Sobrevida
18.
Biomol Ther (Seoul) ; 30(3): 274-283, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34663758

RESUMO

KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.

19.
J Natl Cancer Inst ; 114(2): 228-234, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34613397

RESUMO

BACKGROUND: Pancreatic cancer (PC) has a grim prognosis, and an early diagnostic biomarker has been highly desired. The molecular link between diabetes and PC has not been well established. METHODS: Bioinformatics screening was performed for a serum PC marker. Experiments in cell lines (5 PC and 1 normal cell lines), mouse models, and human tissue staining (37 PC and 10 normal cases) were performed to test asprosin production from PC. Asprosin's diagnostic performance was tested with serums from multi-center cohorts (347 PC, 209 normal, and 55 additional diabetic patients) and evaluated according to PC status, stages, and diabetic status, which was compared with that of CA19-9. RESULTS: Asprosin, a diabetes-related hormone, was found from the bioinformatics screening, and its production from PC was confirmed. Serum asprosin levels from multi-center cohorts yielded an age-adjusted diagnostic area under the curve (AUC) of 0.987 (95% confidence interval [CI] = 0.961 to 0.997), superior to that of CA19-9 (AUC = 0.876, 95% CI = 0.847 to 0.905), and a cut-off of 7.18 ng/mL, at which the validation set exhibited a sensitivity of 0.957 and a specificity of 0.924. Importantly, the performance was maintained in early-stage and non-metastatic PC, consistent with the tissue staining. A slightly lower performance against additional diabetic patients (n = 55) was restored by combining asprosin and CA19-9 (AUC = 0.985, 95% CI = 0.975 to 0.995). CONCLUSIONS: Asprosin is presented as an early-stage PC serum marker that may provide clues for PC-induced diabetes. Larger prospective clinical studies are warranted to solidify its utility.


Assuntos
Diabetes Mellitus , Neoplasias Pancreáticas , Animais , Biomarcadores Tumorais , Antígeno CA-19-9 , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Estudos Prospectivos
20.
BMB Rep ; 54(9): 451-457, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34353431

RESUMO

Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases. [BMB Reports 2021; 54(9): 451-457].


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Tecido Adiposo/metabolismo , Humanos , Resistência à Insulina , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...